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Abstract 

Lifecycle Cost Analysis has a key role in the development of energy efficiency standards for appliances, lighting, 

and other equipment. The analysis includes Monte Carlo simulations to estimate – from a sample of thousands of 

consumers with diverse profiles – the net-present value of all, lifetime costs associated with a piece of equipment to 

provide a certain amount of energy service. This report introduces a set of pseudo-random number generation 

functions developed in MS Excel VBA to support those simulations. It further compares the effectiveness of these 

functions to the effectiveness of similar ones available in a broadly used commercial software program. The 

effectiveness of the functions is evaluated from 17 sets of 1000 samples, each sample comprised of 10,000 pseudo-

random numbers drawn from custom uniform, normal, triangular, Weibull and categorical distributions. All samples 

pass three relevant tests of pseudo-randomness, namely long period, uniformity and independence. The samples also 

prove to be statistically equivalent to their corresponding peers generated by the commercial software program.  
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Random Number Generation for Lifecycle Cost Analysis of Energy Consuming Equipment 

Helcio Blum, Edson Okwelum 

 

1. Introduction 

The Energy Efficiency Standards Group (EESG)1 at LBNL produces technical, economic, and 

environmental analyses to support the U.S. Department of Energy (DOE) in the development of energy 

efficiency standards for appliances, lighting, and other equipment. The analyses evaluate the potential 

benefits from new energy efficiency standards that would shift the market for an energy service towards 

more efficient equipment. Lifecycle Cost (LCC) Analysis is used as the underlying methodological 

framework to evaluate those benefits at the level of individual consumers. The benefits are estimated from 

changes in the net-present value (NPV) of all, lifetime costs associated with a particular appliance, 

lighting device or type of equipment, to provide a certain amount of energy service under different 

scenarios of minimum energy performance standards (meps). Lifetime costs will vary across consumers, 

as they are likely to use the equipment with different intensity and be located in different regions of the 

country. The latter may eventually affect the equipment retail price, its usage, and the energy price paid to 

operate the equipment. Monte Carlo simulation is used to generate a sample of consumers with a diversity 

of socio-economic and geographical profiles. The sample is then used to estimate the impacts from new 

meps on each consumer according to its specific profile.  

This report introduces a set of pseudo-random number generation functions especially developed to 

support Monte Carlo simulation, as part of the LCC analysis, using Microsoft Excel (MS Excel). In the 

following, we describe the methodology used to perform the LCC analysis, and introduce the pseudo-

random number generation functions developed. We then describe and report results from the process 

used to evaluate the functions, which includes statistical tests and the benchmark of the functions against 

a broadly used commercial software program.2 We finally conclude with a summary of the experiment 

and results obtained. A set of seven appendices provide additional, detailed information that includes the 

source code of the functions, as well as the methods, results and tools used in the statistical tests. 

 

2. Lifecycle Cost Analysis of Energy Consuming Equipment 

Lifecycle Cost Analysis is a method to assess cost-effectiveness of investments. It is also known as whole 

cost accounting or total cost of ownership (when the investment refers to a good). The method balances 

initial costs with lifetime costs associated with the investment. In this case, (a) initial costs refer to 

equipment purchase, as well as shipment and installation costs, and (b) lifetime costs include equipment 

maintenance and repair costs, as well as energy costs, all estimated over the life of a unit. The lifecycle 

                                                      
1 The EESG is a research group with the Energy Analysis and Environmental Impacts Division, Energy 

Technologies Area, Lawrence Berkeley National Laboratory (https://ees.lbl.gov/).  
2 The commercial software used to benchmark the MS Excel pseudo-random number generators introduced in this 

report is Oracle’s Crystal Ball (http://www.oracle.com/us/products/applications/crystalball/overview/index.html). 

https://ees.lbl.gov/
http://www.oracle.com/us/products/applications/crystalball/overview/index.html
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cost 𝐿𝐶𝐶𝑐 incurred by a consumer c to enjoy the energy service provided by a unit of a certain type of 

energy consuming equipment is calculated as: 

𝐿𝐶𝐶𝑐 = 𝑇𝐼𝐶𝑐 + ∑ 𝑂𝑃𝐸𝑅𝑐
𝑖=1,𝐿𝑇𝑐

 [1] 

where: 

𝑇𝐼𝐶𝑐 = 𝑅𝐸𝑇𝑐 + 𝐼𝑁𝑆𝑇𝑐 [1a] 

𝑂𝑃𝐸𝑅𝑐 = 𝑀𝑅𝑐 + 𝐸𝐶𝑐 ∗ 𝑃𝑐 [1b] 

and: 

𝐿𝐶𝐶𝑐 Lifecycle cost incurred by consumer 𝑐, 

𝑇𝐼𝐶𝑐 Total installed cost incurred by consumer 𝑐, 

𝐿𝑇𝑐 Lifetime (in years) of the unit operated by consumer 𝑐, 

𝑂𝑃𝐸𝑅𝑐 Total lifetime operating costs incurred by consumer 𝑐, 

𝑅𝐸𝑇𝑐 Retail price paid by consumer 𝑐, 

𝐼𝑁𝑆𝑇𝑐 Installation costs incurred by consumer 𝑐, 

𝑀𝑅𝑐 Annual maintenance and repair costs incurred by consumer 𝑐, 

𝐸𝐶𝑐 Annual energy consumption of the unit operated by consumer 𝑐, 

𝑃𝑐 Energy price paid by consumer 𝑐. 

 

In the LCC analysis performed during the development of new energy efficiency standards, Equation 

[1] is evaluated for a sample comprised of thousands of consumers. For each consumer, 𝐿𝑇𝑐 and all 

variables in Equations [1a] and [1b] are sampled from custom probability distributions, which typically 

rely on the normal, uniform, triangular, Weibull or categorical distributions, and for which long sequences 

of random numbers need to be generated. 

 

3. Random Number Generation Functions 

Random number generators have been used for a long time. They seek at generating sequences of 

numbers or symbols that lack any pattern. In the past, sequences of random numbers were generated, for 

example, from dice, coins and spinning wheels. With the advent of computers, several algorithms for 

generating random numbers have been proposed. They have been classified as pseudo-random number 

generators (pRNG), as they rely on deterministic algorithms to produce apparently random sequences of 
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numbers that meet certain distribution properties.3 According to Hellekalek (1998) “there are no ‘safe’ 

[pseudo-random number] generators.” Nevertheless, the sequences of numbers they generate have been 

considered random enough to support simulations. 

We rely on the inverse transformation method (Devroye, 1986) to generate sequences of pseudo-

random numbers 𝑤𝑖 sampled from five types of probability distributions: uniform, normal, triangular, 

Weibull and categorical. The method has been broadly used for sampling numbers at random from any 

probability distribution given its quantile function (QF), which is the inverse of its cumulative distribution 

function (CDF). The idea is to sample a sequence of numbers 𝑢𝑖 uniformly distributed between 0 and 1, 

and use them as a probability to calculate 𝑤𝑖 such that:4 

Pr(𝑥 ∈ ℝ|𝑥 ≤ 𝑤𝑖) = 𝐹(𝑤𝑖) = 𝑢𝑖 [2] 

where  𝐹 is the CDF of the distribution for which the pseudo-random numbers 𝑤𝑖 are to be generated. The 

method works as follows: (a) draw a random number 𝑢𝑖 from the standard uniform distribution 

(𝑢𝑖~𝑈(0,1)); (b) compute 𝑤𝑖 such that 𝐹(𝑤𝑖) = 𝑢𝑖; (c) take 𝑤𝑖 as the pseudo-random number drawn 

from the distribution described by 𝐹.         

A stream of 𝐿𝐶𝐶𝑐 values can be calculated from Equation [1] using this approach to generate 

sequences of pseudo-random numbers according to the probability distributions of the variables involved 

in that calculation. Let 𝐹𝑣 be the cumulative distribution function that describes a variable 𝑣 in Equations 

[1], [1a] or [1b], and 𝑄𝑣 ≡ 𝐹𝑣
−1. The equations can be rewritten to estimate the 𝐿𝐶𝐶𝑐 of a sampled 

consumer as: 

𝐿𝐶𝐶𝑐 = 𝑇𝐼𝐶𝑐 + ∑ 𝑂𝑃𝐸𝑅𝑐
𝑖=1,𝑄𝐿𝑇(𝑢𝐿𝑇)

 [3] 

𝑇𝐼𝐶𝑐 = 𝑄𝑅𝐸𝑇(𝑢𝑅𝐸𝑇) + 𝑄𝐼𝑁𝑆𝑇(𝑢𝐼𝑁𝑆𝑇) [3a] 

𝑂𝑃𝐸𝑅𝑐 = 𝑄𝑀𝑅(𝑢𝑀𝑅) + 𝑄𝐸𝐶(𝑢𝐸𝐶) ∗ 𝑄𝑃(𝑢𝑃) [3b] 

where 0 ≤ 𝑢𝑣 < 1 is drawn from the standard uniform distribution. 

In Equations [3], [3a] and [3b], the variables that comprise the LCC calculation are represented as 

random numbers, which can be sampled from different, custom probability distributions using the inverse 

transformation method. A computational function to generate random numbers uniformly distributed 

between 0 and 1, as well as one that implements the quantile functions of the desired probability 

distributions are then necessary.  

                                                      
3 In fact, repeatability – the ability to repeat a sequence of pseudo-random numbers – is an appreciated characteristic 

of a pRNG for the application to which the functions introduced in this report were developed. As the LCC 

spreadsheets developed by the EESG are publicly deployed, they enable other parties to perform the same LCC 

analysis, which are expected to lead to same results. Using sequences of true (rather than pseudo-) random numbers 

would lead to similar, statistically equivalent results, yet not exactly the same. 
4 The inverse method is recommended by Hormann (1993) when generating non-uniform pseudo-random numbers 

from uniform distributions, particularly when the uniform pseudo-random numbers are generated using the linear‐
congruential method (LCG). See Section 4 for more on the algorithm and other characteristics of LCG.  
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MS Excel provides two standard uniform distribution pRNG: (a) function RAND(), available at 

spreadsheet level, and (b) function RND(), available in Microsoft Visual Basic for Applications (VBA). 

We rely on RND() to obtain random numbers 𝑢𝑖 ∈ {ℝ|0 ≤ 𝑢𝑖 < 1}. The random numbers 𝑢𝑖 are then 

used as the argument to a QF, according to the type and other additional characteristics of the probability 

distribution from which a pseudo-random number 𝑤𝑖 is to be sampled.
5
 Table 1 presents the analytical 

forms of the QFs corresponding to the probability distributions covered in this report. The table includes 

the formulas of the distributions and the names of the corresponding pRNG functions developed in MS 

Excel VBA. Appendix A presents the VBA source code of these functions. 

 

Table 1: Analytical forms of quantile functions 

Distribution Analytical Form
a
 Proposed Function 

Uniform 𝑢 ∙ (𝑏 − 𝑎) + 𝑎 eesUniform 

Normalb,c MS Excel function NORM.INV eesNormal 

Triangularc {
√𝑢 ∙ (𝑏 − 𝑎) ∙ (𝑐 − 𝑎) + 𝑎, 𝑢 < (𝑐 − 𝑎) (𝑏 − 𝑎)⁄

𝑏 − √(1 − 𝑢) ∙ (𝑏 − 𝑎) ∙ (𝑏 − 𝑐), 𝑢 ≥ (𝑐 − 𝑎) (𝑏 − 𝑎)⁄
  eesTriangular 

Weibullc 𝜃 + 𝜆 ∙ √−𝑙𝑛(1 − 𝑢)
𝑘

 eesWeibull 

Categoricald {
𝐶1, 𝑢 < Pr(𝐶1)

𝐶𝑘, ∑ Pr(𝐶𝑖)𝑖=1,𝑘−1 ≤ 𝑢 < ∑ Pr(𝐶𝑖)𝑖=1,𝑘  for 𝑘 = 2. . 𝐾
  eesCateg 

a In the formulas, 𝑎 and 𝑏 represent the lower and upper limits of a uniform and triangular distributions; 𝑐 represents the mode 

of a triangular distribution; and 𝜃, 𝜆 and 𝑘 represent respectively the location, scale and shape of a Weibull distribution.  
b There is no analytical form for the quantile function of the normal distribution. One can approximate it using the sum: 

∑ 2𝜋
2𝑛+1

2𝑛≥0
𝐶2𝑛+1

(2𝑛+1)!
(𝑥 −

1

2
)

2𝑛+1
 where 𝐶1 = 1, 𝐶3 = 1, 𝐶5 = 7, 𝐶7 = 127 … (Dominici, 2003). We rely on an MS Excel native 

function to calculate 𝑢𝑖 given 𝑧.  
c A bounded version of this distribution is also available, and refers to the special case of the former distribution where the 

pseudo-random numbers 𝑤𝑖 generated are further subject to 𝐿 ≤ 𝑤𝑖 ≤ 𝑈, where 𝐿 and 𝑈 are respectively the lower and upper 

bounds of the range of pseudo-random numbers to be generated. The lower and upper bounds are implemented within the 

corresponding pRNG function. 
d 𝐶𝑖 is the 𝑖-th of the 𝐾 categories in the distribution, and Pr(𝐶𝑖) is the probability associated to the 𝑖-th category. 

 

 

4. Effectiveness Evaluation 

The effectiveness of the pseudo-random number sequences generated by a pRNG depends on the quality 

of both the standard uniform pRNG that underlies the inverse transformation method and the 

implementation of the inverse transformation method itself. The evaluation of the pRNG functions 

introduced in this report (hereafter referred to as ‘the proposed functions’) is therefore developed in two 

steps: First, the MS Excel VBA RND() function, which is the building block of the proposed functions, is 

tested for three basic requirements for any standard uniform pRNG; then, the pseudo-random number 

                                                      
5 In case of normal distribution, we replace any 𝑢𝑖 = 0 by a new sampled random number 𝑢𝑖

′ > 0. 
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sequences generated by the proposed functions are benchmarked based on goodness-of-fit and other 

statistical tests. 

Evaluating the RND() Function  

The basic requirements for a standard uniform pRNG are that the sequences of pseudo-random numbers 

they generate present long period, uniformity and independence. The long period requirement refers to the 

(undesirable) existence of cycles within sequences generated by the pRNG. The RND() function develops 

upon the linear‐congruential method (LCG) to produce sequences of pseudo-random numbers between 0 

and 1 (Microsoft, 2004). The LCG generates sequences of uniformly distributed pseudo-random numbers 

based on the formula: 

𝑋𝑛+1 = (𝑎 ∙ 𝑋𝑛 + 𝑐) mod 𝑚 [4] 

where 𝑋0 is the sequence’s seed, 𝑎 is the multiplier, 𝑐 is the increment, and 𝑚 is the modulus.  

The resulting sequence can be normalized to the interval [0, 1) by dividing the pseudo-random 

numbers by 𝑚. Depending on the parameters used in an LCG algorithm, the period of a sequence is at 

most equals to the parameter modulus of the LCG formula. According to Hull and Dobell (1962), the 

conditions for an LCG sequence to have full period6 are: 

(i) 𝑐 is relatively prime to 𝑚,  

(ii) 𝑎 ≡ 1 (mod 𝑝) if 𝑝 is a prime factor or 𝑚, and  

(iii) 𝑎 ≡ 1 (mod 4) if 4 is a factor of 𝑚. 

When 𝑚 is a power of 2, it is only necessary to have 𝑐 odd and 𝑎 ≡ 1 (mod 4) to meet the 

requirements above (Hull and Dobell, 1962). The MS Excel VBA RND() function uses the following 

parameters for the LCG algorithm: 𝑎=1140671485, 𝑐=12820163, and 𝑚=224 (Microsoft, 2004). We can 

therefore conclude that the RND() function is most likely to generate full period sequences,7 which are 

much longer than the typical 10,000-trial samples used in the LCC analysis. We nevertheless create 1000 

samples 𝑉𝑗 of 10,000 pseudo-random numbers 𝑣𝑖,𝑗 to test it. No repeated values were found, either within 

or across all samples 𝑉𝑗. Since all samples were generated in a single spreadsheet and at the same time, 

one can also assume that they comprise a single sequence of 1000 times 10,000 numbers, for which no 

repeated values were found. 

The uniformity requirement for a standard uniform pRNG refers to how evenly the pseudo-random 

numbers generated are distributed. To test RND() for uniformity we (a) use the 1000 samples 𝑉𝑗 of 

pseudo-random numbers in the interval [0,1) created above, (b) regress the empirical cumulative 

distribution 𝐹(𝑉𝑗) of each sample 𝑉𝑗 against a sequence 𝑈 of 10,000 consecutive numbers uniformly 

distributed between 0 and 1, and (c) test the regression coefficients for their ideal, expected values that 

would indicate that the samples 𝑉𝑗 meet the uniformity requirement. We use the following linear 

regression model:  

                                                      
6 A period equals to the modulus. 
7 W. Santy has empirically found that for the RND() function in VB the period is 224. See Kyd (2011). 
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𝐹(𝑉𝑗) = 𝛼𝑗 + 𝛽𝑗 ∙ 𝑈 + 𝜀𝑗 [5] 

where 𝐹(𝑉𝑗) is the cumulative distribution of 𝑉𝑗, 𝑈 = [0.0001, 0.0002, … , 1]′ is a vector of 10,000 

monotonically increasing, uniformly distributed numbers, and 𝜀𝑗 is the vector of statistical errors 

corresponding to sample 𝑉𝑗. The linear regression in model [5] attempts to measure how accurately the 

cumulative distribution of the empirical sequence 𝑉𝑗 approximates the cumulative distribution of the 

theoretical, standard uniform distribution. Ideally 𝛼𝑗 = 0, 𝛽𝑗 = 1 and 𝜀𝑗 = 0, ∀𝑗. 

We estimate the 1000 values of 𝛼𝑗 and 𝛽𝑗, and their corresponding standard-errors, t-Stat values and 

p-values. The intercepts 𝛼𝑗 range from -0.01180 to 0.01278, with mean equals to -0.00015 and 95% 

confidence interval [-0.00724, 0.00694]. The average standard-error of 𝛼𝑗 is 0.00005. The t-Stat values 

range from -190 to 186, with mean equals to -3. The p-values range from 0 to 0.975, with mean 0.007. 

For 98.5% of the samples the p-value is equal or lower than 0.05, which indicates that the intercept in 

model [5] – despite being very small – matters. However, a one-sample t-test of the 1000 values of 𝛼𝑗, to 

test the null-hypothesis that their mean is equal to zero, leads to a p-value equals to 0.17. For a 

significance level of 0.05 the null-hypothesis cannot be rejected. We therefore assume that 𝛼𝑗 = 0 at that 

significance level.  

The coefficients 𝛽𝑗 range from 0.98552 to 1.01233, with mean equals to 1.00003 and 95% confidence 

interval [0.99116, 1.00891]. The average standard-error of 𝛽𝑗 is 0.00009. The t-Stat values range from 

4614 to 26406, with mean equals to 12695. All p-values are equal to zero. A one-sample t-test of the 1000 

values of 𝛽𝑗, to test the null-hypothesis that their mean is equal to one, leads to a p-value equals to 0.81. 

For a significance level of 0.05 the null-hypothesis cannot be rejected. We therefore assume that 𝛽𝑗 = 1 at 

that significance level. Based on these two statistical results we assume that the cumulative distributions 

of the 1000 samples 𝑉𝑗 approximate the cumulative distribution of a standard uniform distribution and, 

consequently, that RND() meets the uniformity requirement.  

We finally evaluate whether the sequences generated by RND() meet the independence requirement. 

The independence requirement refers to the inexistence of any autocorrelation between the values of a 

sample. All samples generated by the proposed functions have close to zero autocorrelation with lags 

varying from 1 to 40. Hence, we assume the samples generated by the proposed functions meet the 

independence requirement. Figure 1 exemplifies how a sequence of pairs 𝑧 = (𝑣𝑖,1, 𝑣𝑖+𝑙𝑎𝑔,1), derived 

from sample 𝑉1, is graphically distributed for lag values equal to 1, 2, 5 and 10 (Petrila et al, 2014). In all 

cases, the sequenced pairs uniformly cover the entire range and no pattern can be visually identified, 

which reinforces the inexistence of correlation between sequenced numbers with different lags. Based on 

the results above, we conclude that the MS Excel VBA RND() function, after being tested for long period, 

uniformity and independence, meets relevant requirements of pseudo-randomness for a standard uniform 

pRNG. It is therefore a robust resource to supply the proposed functions with sequences of pseudo-

random numbers drawn from the standard uniform distribution.  
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Figure 1: Graphical distributions of sequences of paired* pseudo-random numbers  

  

  
* Lags are 1, 2, 5 and 10, from left to right and top-down.  

 

Benchmarking the Proposed Functions  

We proceed with the evaluation process by benchmarking a set of custom pseudo-random number 

sequences generated by the proposed functions against similar sequences generated by a commercial 

software program (hereafter referred to as ‘the commercial software’).2 We use both pRNG tools to create 

17 sets of 1000 samples, each sample comprised by 10,000 pseudo-random numbers drawn from a 

custom distribution. Table 2 and Table 3 describe the 17 sets of custom samples generated. Appendix B 

presents probability density and QQ plots for all samples for the continuous distributions in Table 2, and 

probability mass plots for the categorical ones in Table 3. The plots also include the corresponding 

theoretical distributions.  

The benchmark follows a two-stage process. First we use goodness-of-fit statistical tests to 

benchmark the samples against their corresponding theoretical distributions, precisely calculated from the 

distributions’ analytical forms. Then, we evaluate – for each statistical test – if the distributions of the 

goodness-of-fit statistic calculated for the proposed functions and the commercial software in the first 

stage can be assumed to come from the same population, in which case we conclude that the proposed 
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functions are as effective as the commercial software to produce pseudo-random number sequences for 

that type of distribution. This is possible under the assumption that the results from benchmarking the 

1000 samples generated by each tool, for a given type of distribution, against their corresponding 

theoretical distribution, represent a stochastic measure of the effectiveness of the tools to produce samples 

of pseudo-random numbers distributed according to that type of distribution. Figure 2 illustrates the two-

stage benchmark process. 

 

Table 2: Samples description (continuous distributions) 

Distribution Description 

Uniform 𝑈 Lower = −1, Upper = +1 

Normal 
𝑁 Mean = 0, SD = 1 

𝑁𝐵 Mean = 0, SD = 1, Bounded to [−1.5, +2.0] 

Triangular 

𝑇 Lower = −1, Mode = 0, Upper = +1 

𝑇𝐵 Lower = −1, Mode = 0, Upper = +1, Bounded to [−0.25, +0.75]  

𝑇𝑅 Lower = −1, Mode = −0.5, Upper = +1 

𝑇𝐿 Lower = −1, Mode = +0.5, Upper = +1 

𝑇𝐷 Lower = −1, Mode = −1, Upper = +1 

𝑇𝑈 Lower = −1, Mode = +1, Upper = +1 

Weibull 

𝑊𝑎 Location = +1, Shape = 1.5, Scale = 5 

𝑊𝑏 Location = +1, Shape = 2, Scale = 10 

𝑊𝑐 Location = +1, Shape = 2, Scale = 15 

𝑊𝑑 Location = +1, Shape = 3, Scale = 20 

 

Table 3: Samples description (categorical distributions)  

Distribution 
Frequencies by Category 

a b c d e f g h i j 

𝐶2 0.4 0.6         

𝐶3 0.2 0.5 0.3        

𝐶5 0.1 0.2 0.1 0.5 0.1      

𝐶10 0.130 0.011 0.107 0.138 0.094 0.121 0.109 0.115 0.046 0.129 

 

We rely on three goodness-of-fit statistical tests for the first stage. For the samples generated from the 

continuous distributions we use the Kolmogorov-Smirnov (KS) test and the Kullback-Leibler (KL) 

divergence. The two methods are broadly used to compare samples of continuous numbers, and present 

relevant characteristics for this benchmark: Whereas the KS test expresses similarity based on a worst 
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case approach, looking at the highest deviation between the two cumulative distributions being compared, 

the KL divergence expresses similarity based on an integral approach, accounting for deviations in the 

probability functions all over the range of the distributions. As for the samples generated from the 

categorical distributions, we use the Chi-Square Goodness-of-fit (𝜒2) test to assess how well each sample 

fits to its corresponding theoretical distribution.  

 

Figure 2: Two-stage benchmark process 

 

Note: In the first stage we use a goodness-of-fit statistical test to compare each of the 1000 samples generated 

by each tool with its corresponding theoretical distribution. This leads to 1000 values of the statistical test for 

each tool. We use two different statistical tests in that stage for the continuous distributions, and one test for the 

categorical ones. The results from each goodness-of-fit test expresses the effectiveness of the tool in generating 

sequences that meet the characteristics of the distribution to which the sequences are expected to fit. In the 

second stage we compare the effectiveness of each tool by testing if the distributions of the 1000 results from 

each statistical test calculated for each tool can be assumed to be statistically equivalent.  

 

In the second stage of the benchmark process, we use a variant of the KS test to compare the 

distributions of the 1000 statistics calculated for the samples generated by the proposed functions and the 

commercial software for each custom distribution. We then complete the benchmark process with the 

equivalence- and non-inferiority tests, where we assess – based on the effectiveness of each tool 

calculated from each of the statistical tests above – whether the proposed functions can be considered, 

respectively, equivalent and no worse than the commercial software. Appendix C, D and E describe the 

theoretical approach and present detailed results for the KS, KL and 𝜒2 statistical tests. Appendix F 
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describes the equivalence and non-inferiority tests, and presents results for those tests. All statistical 

analyses are developed in R (R Core Team, 2015). Appendix G presents the R source codes. 

Results show that the proposed functions can be considered equivalent to the commercial software 

within an equivalence interval ranging from less than 0.1% to 2.4%, depending on the distribution type 

and the statistical test. In a few cases, the statistical tests calculated for the proposed functions result in a 

mean value that is higher than the corresponding mean calculated for the commercial software. This could 

indicate that, for those cases, the proposed functions are not as effective as the commercial software. 

However, for all those cases, the proposed functions are estimated to be non-inferior than the latter for a 

margin of non-inferiority equals to 0.1%, and with statistical significance lower than 0.001. 

 

5. Conclusions 

LBNL performs LCC analysis for DOE using MS Excel spreadsheets. As part of the LCC analysis, a 

commercial software program is currently used to generate pseudo-random numbers in support to Monte 

Carlo simulations. MS Excel VBA provides a pseudo-random number generator function that produces 

pseudo-random sequences of real numbers between 0 and 1. Using the inverse transformation method 

these sequences can be translated into sequences of pseudo-random numbers sampled from other custom 

distributions. This report introduces a set of pseudo-random generation functions coded in MS Excel 

VBA. The functions rely on the inverse transformation method and the MS Excel VBA pseudo-random 

number generator function RND() to produce samples of real numbers or categorical data distributed 

according to a select set of types of distributions.  

The functions are evaluated from two perspectives. First, we test the MS Excel VBA RND() function, 

which is the building block of the proposed functions, for three relevant requirements for pseudo-

randomness: long period, uniformity and independence. The RND() function passes the three tests. 

Consequently, we conclude that the sequences generated by the proposed functions can also be 

considered pseudo-randomly distributed.  

We then evaluate the effectiveness of the proposed functions, for which we generate two groups of 17 

sets of 1000 samples, with each sample comprised by 10,000 random numbers drawn from a custom 

distribution. The two groups refer to (a) samples generated from the proposed functions introduced in this 

report, and (b) samples generated from the commercial software program currently used by the EESG. 

The samples generated from each tool for 13 continuous distributions are evaluated with the Kolmogorov-

Smirnov test and the Kullback-Leibler divergence measure. The samples generated from each tool for the 

four categorical distributions are evaluated with the Chi-Square Goodness-of-Fit test. The distributions of 

the 1000 values of these three statistics, calculated for each sample generated by each tool, are then 

compared using the two-sample Kolmogorov-Smirnov test. Results from the latter test show that the 

distributions of the statistics calculated for the samples generated from each tool are statistically 

equivalent.  

We further compare the differences of the means of the distributions of the three statistics calculated 

for the samples generated from each tool using the equivalence and the non-inferiority tests. Results for 

each of the statistics show that the proposed functions can be considered as effective as and non-inferior 
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than the ones embedded in the commercial software program used to benchmark them, in generating 

samples of pseudo-random numbers distributed according to the custom distributions they implement. 

The proposed functions are, in addition, transparent and publicly available, and can be used in MS Excel 

spreadsheets as an alternative to the latter.  
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Appendix A: VBA Source Codes 

 

Table A.4 describes the parameters to the random number generation function. Box A.1 through Box A.5 

present the VBA source code of the functions. 

 

Table A.4: Parameters to the Functions 

Distribution 
MS Excel 

Function 

Parameter 

Namea Description 

Uniform eesUniform Lower Lower bound 

Upper Upper bound 

Normal eesNormal Mean Mean 

SD Standard deviation 

lowerCutb Lower limit 

Uppercutb Upper limit 

Triangular eesTriangular Lower Lower bound 

Upper Upper bound 

Mode Likeliest value 

lowerCutb Lower limit 

uppercutb Upper limit 

Weibull eesWeibull Shp Shape 

Scl Scale 

Loc Location 

lowerCut
b
 Lower limit 

uppercutb Upper limit 

Categorical eesCateg Labels List of categoriesc 

Frequency List of frequenciesc 
a Parameters in bold are mandatory. 
b Lower and upper limits apply to bounded distributions only. 
c Both lists should have same number of elements. 
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Box A.1: VBA Source Code for Function eesUniform 
Function eesUniform(Lower, Upper) As Double 

 eesUniform = Lower + Rnd() * (Upper - Lower) 

End Function 

 

Box A.2: VBA Source Code for Function eesNormal 
Function eesNormal(Mean, SD, Optional lowerCut = -1E+32, Optional upperCut = 1E+32) As Double 

 cummLow = (lowerCut - Mean) / SD 

 cummUp = (upperCut - Mean) / SD 

 myRND = Rnd() 

 zRnd = Application.WorksheetFunction.NormDist(cummLow, Mean, SD, True) + _ 

        IIf(myRND = 0, Rnd(), myRND) * (Application.WorksheetFunction.NormDist(cummUp, Mean, SD, True) - 

Application.WorksheetFunction.NormDist(cummLow, Mean, SD, True)) 

 eesNormal = Application.WorksheetFunction.NormInv(zRnd, Mean, SD) * SD + Mean 

End Function 

 

Box A.3: VBA Source Code for Function eesTriangular 
Function eesTriangular(Lower, Upper, Optional Mode, Optional lowerCut, Optional upperCut) As Double 

 If IsMissing(Mode) Or IsEmpty(Mode) Then Mode = (Lower + Upper) / 2 

 Mode = Application.WorksheetFunction.Max(Lower, Application.WorksheetFunction.Min(Upper, Mode)) 

 If IsMissing(lowerCut) Then lowerCut = Lower 

 lowerCut = Application.WorksheetFunction.Max(Lower, Application.WorksheetFunction.Min(Upper, lowerCut)) 

 If IsMissing(upperCut) Then upperCut = Upper 

 upperCut = Application.WorksheetFunction.Max(Lower, Application.WorksheetFunction.Min(Upper, upperCut)) 

 If Mode = Lower Then 

  cummLow = 0 

 Else 

  cummLow = (lowerCut - Lower) ^ 2 / ((Upper - Lower) * (Mode - Lower)) 

 End If 

 If Mode = Upper Then 

  cummUp = 1 

 Else 

  cummUp = 1 - (Upper - upperCut) ^ 2 / ((Upper - Lower) * (Upper - Mode)) 

 End If 

 zRnd = cummLow + Rnd() * (cummUp - cummLow) 

 If zRnd < (Mode - Lower) / (Upper - Lower) Then 

  x = Sqr(zRnd * (Upper - Lower) * (Mode - Lower)) + Lower 

 Else 

  x = Upper - Sqr((1 - zRnd) * (Upper - Lower) * (Upper - Mode)) 

 End If 

 eesTriangular = x 

End Function 



19 
  

 

Box A.4: VBA Source Code for Function eesWeibull 
Function eesWeibull(Shp, Scl, Optional Loc = 0, Optional lowerCut = -1E+32, Optional upperCut = 1E+32) As Double 

 x = Loc + Scl * (-Log(1 - Rnd())) ^ (1 / Shp) 

 While x < lowerCut Or x > upperCut 

  x = Loc + Scl * (-Log(1 - Rnd())) ^ (1 / Shp) 

 Wend 

 eesWeibull = x 

End Function 

 

Box A.5: VBA Source Code for Function eesCateg 
Function eesCateg(Labels, Frequency) As Variant 

 myRandom = Rnd() 

 Dim p As Double 

 p = Frequency(1) 

 i = 1 

 While myRandom >= p 

  i = i + 1 

  p = p + Frequency(i) 

 Wend 

 If IsMissing(Labels) Then 

  eesCateg = i 

 Else 

  eesCateg = Labels(i) 

 End If 

End Function 
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Appendix B: Density and QQ Plots of EES Samples 

 

This appendix presents histograms and QQ plots from the 1000 samples generated by the proposed 

functions for each of the continuous distributions listed in Table 2 (Figure B.3 to Figure B.9), and 

probability mass plots for each of the categorical distributions in Table 3 (Figure B.10). The shaded areas 

show the variability of results across samples. The histograms also include a red curve (red dot markers in 

case of categorical distributions) that represents the theoretical distribution against which each sample is 

benchmarked in Section 4. In the QQ-plots, the horizontal axis refers to the quantiles of the samples 

generated by the proposed functions, and the vertical one to the theoretical distributions. 

 

  
Figure B.3: Histogram and QQ plot of the samples generated from the uniform distribution 
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Figure B.4: Histograms and QQ plots of the samples generated from the normal distributions 
Top to bottom: Distributions 𝑁 and 𝑁𝐵. 
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Figure B.5: Histograms and QQ plots of the samples generated from the symmetric and bounded 

triangular distributions 
Top to bottom: Distributions 𝑇 and 𝑇𝐵. 
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Figure B.6: Histograms and QQ plots of the samples generated from the asymmetric triangular 

distributions 
Top to bottom: Distributions 𝑇𝑅 and 𝑇𝐿. 
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Figure B.7: Histograms and QQ plots of the samples generated from the one-side triangular 

distributions 
Top to bottom: Distributions 𝑇𝐷 and 𝑇𝑈. 
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Figure B.8: Histograms and QQ plots of the samples generated from the Weibull distributions Wa 

and Wb 
Top to bottom: Distributions 𝑊𝑎 and 𝑊𝑏. 
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Figure B.9: Histograms and QQ plots of the samples generated from the Weibull distributions Wc 

and Wd 
Top to bottom: Distributions 𝑊𝑐 and 𝑊𝑑. 
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Figure B.10: Mass distribution of the samples generated from the categorical distributions 
Top row, left to right: Distributions 𝐶2 and 𝐶3. 

Bottom row, left to right: Distributions 𝐶5 and 𝐶10. 
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Appendix C: Kolmogorov-Smirnov Test 

 

The KS test9 is a nonparametric test of the equality of continuous, one-dimensional probability 

distributions that can be used to compare: (a) a sample with a reference probability distribution (one-

sample KS test), or (b) two samples (two-sample KS test). The KS statistic 𝐷 quantifies a distance 

between the distributions being compared. In case of the one-sample KS test, the statistic refers to the 

distance between the empirical distribution function underlying the sample and the CDF of the reference 

distribution. In case of the two-sample KS test, the statistic measures the distance between the empirical 

distributions of the two samples. In both cases, the distance is calculated as the maximum absolute 

difference between the CDFs of the two distributions being compared. We calculate the one-sample KS 

statistics 𝐷𝑑,𝑠
𝐸  and 𝐷𝑑,𝑠

𝐶  for each of the samples 𝑊𝑑,𝑠
𝐸 = [𝑤𝑑,𝑠,𝑖

𝐸 ] and 𝑊𝑑,𝑠
𝐶 = [𝑤𝑑,𝑠,𝑖

𝐶 ], 𝑠 = 1, … ,1000 

generated respectively by the proposed functions and the commercial software, for each continuous 

distribution 𝑑 listed in Table 2 as: 

𝐷𝑑,𝑠
𝐸 = sup

𝑤𝑠,𝑖
𝐸

|𝐹𝑑
𝐸(𝑊𝑑,𝑠

𝐸 ) − 𝐹𝑑(𝑊𝑑,𝑠
𝐸 )| 

[6a] 

𝐷𝑑,𝑠
𝐶 = sup

𝑤𝑠,𝑖
𝐶

|𝐹𝑑
𝐶(𝑊𝑑,𝑠

𝐶 ) − 𝐹𝑑(𝑊𝑑,𝑠
𝐶 )| [6b] 

where 𝐹𝑑
𝐸(𝑊𝑑,𝑠

𝐸 ) and 𝐹𝑑
𝐶(𝑊𝑑,𝑠

𝐶 ) are respectively the CDFs of the samples 𝑊𝑑,𝑠
𝐸  and 𝑊𝑑,𝑠

𝐶 , and 𝐹𝑑(𝑊𝑑,𝑠
𝐸 ) 

and 𝐹𝑑(𝑊𝑑,𝑠
𝐶 ) the CDFs of the reference distribution 𝑑 calculated for the same values that comprise the 

samples 𝑊𝑑,𝑠
𝐸  and 𝑊𝑑,𝑠

𝐶 .  

We proceed with the benchmark based on the KS test by comparing – for each distribution 𝑑 in Table 

2 – the distributions of the 1000 values of 𝐷𝑑,𝑠
𝐸  with the distributions of the 1000 values of 𝐷𝑑,𝑠

𝐶 . Table C.5 

presents descriptive statistics for distributions 𝐷𝑑,𝑠
𝐸  and 𝐷𝑑,𝑠

𝐶 . Figure C.11 to Figure C.15 compare the 

distributions of 𝐷𝑑,𝑠
𝐸  and 𝐷𝑑,𝑠

𝐶 . Results show that the distributions of the KS statistics calculated from 

samples generated by the proposed functions and the commercial software have mostly the same shape, 

with very close mean, median, and lower- and upper bound values.  

 

 

 

 

 

 

 

                                                      
9 For more details see, for example, Massey (1951). 
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Table C.5: Descriptive statistics of the distributions of KS statistics 

Dist 

(𝑑) 

Proposed Functions 

(𝐷𝑑,𝑠
𝐸 ) 

Commercial Software 

(𝐷𝑑,𝑠
𝐶 ) 

Min Median Max Mean Min Median Max Mean 

𝑈 0.00369 0.00829 0.02000 0.00865 0.00386 0.00806 0.01992 0.00848 

𝑁 0.00368 0.00816 0.02249 0.00867 0.00362 0.00806 0.01909 0.00849 

𝑁𝐵 0.00510 0.01160 0.03050 0.01222 0.00490 0.01155 0.02820 0.01222 

𝑇 0.00349 0.00822 0.01791 0.00857 0.00395 0.00833 0.02180 0.00876 

𝑇𝐵 0.00369 0.00813 0.02203 0.00862 0.00349 0.00829 0.02083 0.00873 

𝑇𝑅 0.00394 0.00814 0.01864 0.00861 0.00407 0.00832 0.01789 0.00874 

𝑇𝐿 0.00388 0.00828 0.02122 0.00874 0.00381 0.00842 0.01994 0.00872 

𝑇𝐷 0.00338 0.00819 0.01985 0.00857 0.00344 0.00822 0.01972 0.00869 

𝑇𝑈 0.00338 0.00819 0.01985 0.00857 0.00335 0.00810 0.02177 0.00859 

𝑊𝑎 0.00375 0.00824 0.01995 0.00864 0.00329 0.00812 0.02064 0.00859 

𝑊𝑏 0.00343 0.00820 0.01933 0.00866 0.00418 0.00852 0.02113 0.00888 

𝑊𝑐 0.00335 0.00818 0.01758 0.00865 0.00342 0.00839 0.01981 0.00877 

𝑊𝑑 0.00369 0.00813 0.02203 0.00862 0.00393 0.00824 0.01990 0.00862 

 

 

  
Figure C.11: Density distribution and QQ plots of KS statistics for the Uniform Distribution 
Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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Figure C.12: Density distribution and QQ plots of KS statistics for Normal Distributions 
From top to bottom: Distributions 𝑁 and 𝑁𝐵. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 

  

  
Figure C.13: Density distribution and QQ plots of KS statistics for Triangular Distributions 
From top to bottom: Distributions 𝑇 and 𝑇𝐵. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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Figure C.14: Density distribution and QQ plots of KS statistics for Triangular Distributions 
From top to bottom: Distributions 𝑇𝑅, 𝑇𝐿, 𝑇𝐷 and 𝑇𝑈. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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Figure C.15: Density distribution and QQ plots of KS statistics for Weibull Distributions 
From top to bottom: Distributions 𝑊𝑎, 𝑊𝑏, 𝑊𝑐 and 𝑊𝑑. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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In order to compare the effectiveness of the proposed functions and the commercial software using 

the KS test approach, we perform the two-sample KS test over the distributions of the 1000 values of 𝐷𝑑,𝑠
𝐸  

and 𝐷𝑑,𝑠
𝐶  to verify if they can be assumed to be random samples from the same population. We first 

calculate the KS statistic 𝐷𝑑
𝐾𝑆 for each distribution 𝑑 as: 

𝐷𝑑
𝐾𝑆 = 𝑠𝑢𝑝

𝐷𝑑,𝑠

|𝐹𝐸(𝐷𝑑,𝑠) − 𝐹𝐶(𝐷𝑑,𝑠)| [7] 

where 𝐷𝑑,𝑠 = 𝐷𝑑,𝑠
𝐸 ∪ 𝐷𝑑,𝑠

𝐶  and 𝐹𝐸(𝐷𝑑,𝑠) and 𝐹𝐶(𝐷𝑑,𝑠) are respectively the cumulative distributions of 𝐷𝑑,𝑠
𝐸  

and 𝐷𝑑,𝑠
𝐶  calculated over 𝐷𝑑,𝑠. Table C.6 shows the values of 𝐷𝑑

𝐾𝑆 calculated for each continuous 

distribution 𝑑 covered in this report. We then compare each 𝐷𝑑
𝐾𝑆 with the KS critical value Dα

′  calculated 

as: 

𝐷𝛼
′ = 𝐹𝐾𝑆

−1(𝛼) ∙ √
𝑛𝐸 + 𝑛𝐶

𝑛𝐸 ∙ 𝑛𝐶
= 𝐹𝐾𝑆

−1(𝛼) ∙ √
2

1000
 [8] 

where 𝛼 is the significance level, 𝐹𝐾𝑆
−1 is the inverse of the KS CDF, and  𝑛𝐸 = 𝑛𝐶 = 1000 are 

the sizes of the two samples being compared. For a given distribution 𝑑, the results from the proposed 

functions and the commercial software can be considered equivalent – at the significance level of 𝛼 – if 

𝐷𝑑
𝐾𝑆 ≤ 𝐷𝛼

′ . For 𝛼 = 0.05, 𝐹𝐾𝑆
−1 = 1.36 and the KS critical value 𝐷𝛼

′  is equal to 0.06082. Results in Table 

C.6 show that all 𝐷𝑑
𝐾𝑆 are lower than the critical value 𝐷𝛼

′ . Therefore the proposed functions and the 

commercial software present statistically equivalent effectiveness when the samples generated are 

compared with their corresponding theoretical distributions using the KS test. 

Table C.6: Equivalence evaluated from the KS test 

Distribution 
Two-sample KS Statistic 

(𝐷𝑑
𝐾𝑆) 

Uniform 𝑈 0.041 

Normal 
𝑁 0.044 

𝑁𝐵 0.036 

Triangular 

𝑇 0.040 

𝑇𝐵 0.033 

𝑇𝑅 0.051 

𝑇𝐿 0.029 

𝑇𝐷 0.035 

𝑇𝑈 0.026 

Weibull 

𝑊𝑎 0.035 

𝑊𝑏 0.055 

𝑊𝑐 0.041 

𝑊𝑑 0.031 
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Appendix D: Kullback-Leibler Divergence 

 

The KL divergence (Kullback and Leibler, 1951) is a non-symmetric measure of the difference between 

two probability distributions that expresses the information lost when one distribution is used to 

approximate the other. In this study, the KL divergence measure is used to evaluate the extent to what the 

empirical distributions 𝑃𝑑
𝐸(𝑊𝑑,𝑠

𝐸 ) and 𝑃𝑑
𝐶(𝑊𝑑,𝑠

𝐶 ), calculated respectively from the samples 𝑊𝑑,𝑠
𝐸 = [𝑤𝑑,𝑠,𝑖

𝐸 ] 

and 𝑊𝑑,𝑠
𝐶 = [𝑤𝑑,𝑠,𝑖

𝐶 ], 𝑠 = 1, … ,1000 generated by the proposed functions and the commercial software, 

can be used to approximate their corresponding theoretical distributions. We calculate the KL statistics 

𝐾𝑑,𝑠
𝐸  and 𝐾𝑑,𝑠

𝐶  for each of the samples generated by the proposed functions and the commercial software, 

for each continuous distribution 𝑑 listed in Table 2 as:10
 

𝐾𝑑,𝑠
𝐸 (𝑃𝑑(𝑊𝑑,𝑠

𝐸 )||𝑃𝑑
𝐸(𝑊𝑑,𝑠

𝐸 )) = ∑ 𝑃𝑑(𝑊𝑑,𝑠
𝐸 )

𝑖
ln

𝑃𝑑(𝑊𝑑,𝑠
𝐸 )

𝑃𝑑
𝐸(𝑊𝑑,𝑠

𝐸 )
 [9a] 

𝐾𝑑,𝑠
𝐶 (𝑃𝑑(𝑊𝑑,𝑠

𝐶 )||𝑃𝑑
𝐶(𝑊𝑑,𝑠

𝐶 )) = ∑ 𝑃𝑑(𝑊𝑑,𝑠
𝐶 )

𝑖
ln

𝑃𝑑(𝑊𝑑,𝑠
𝐶 )

𝑃𝑑
𝐸(𝑊𝑑,𝑠

𝐶 )
 

[9b] 

where 𝑃𝑑
𝐸(𝑊𝑑,𝑠

𝐸 ) and 𝑃𝑑
𝐶(𝑊𝑑,𝑠

𝐶 ) are respectively the PDFs of the samples 𝑊𝑑,𝑠
𝐸  and 𝑊𝑑,𝑠

𝐶 , and 𝑃𝑑(𝑊𝑑,𝑠
𝐸 ) 

and 𝑃𝑑(𝑊𝑑,𝑠
𝐶 ) the PDFs of the reference distribution 𝑑 calculated for the same values that comprise the 

samples 𝑊𝑑,𝑠
𝐸  and 𝑊𝑑,𝑠

𝐶 .  

We proceed with the benchmark based on the KL divergence by comparing – for each distribution 𝑑 

in Table 2 – the distribution of the 1000 values of 𝐾𝑑,𝑠
𝐸  with the distribution of the 1000 values of 𝐾𝑑,𝑠

𝐶 . 

Table D.7 presents descriptive statistics for distributions 𝐾𝑑,𝑠
𝐸  and 𝐾𝑑,𝑠

𝐶 . Figure D.16 to Figure D.20 

compare the distributions of 𝐾𝑑,𝑠
𝐸  and 𝐾𝑑,𝑠

𝐶 .  

In order to compare the effectiveness of the proposed functions and the commercial software 

measured with the KL divergence approach, we perform – for each continuous distribution 𝑑 – the two-

sample KS test (as described in Appendix C) over the distributions of the 1000 values of 𝐾𝑑,𝑠
𝐸  and 𝐾𝑑,𝑠

𝐶  to 

verify if they can be assumed to be random samples of the same population. The approach is similar to the 

one used in Appendix C to compare the results from the one-sample KS tests as represented in Equation 

[7]. We first calculate the KS statistic 𝐷𝑑
𝐾𝐿 for each continuous distribution 𝑑 as: 

𝐷𝑑
𝐾𝐿 = sup

𝐾𝑑,𝑠

|𝐹𝐸(𝐾𝑑,𝑠) − 𝐹𝐶(𝐾𝑑,𝑠)| [10] 

where 𝐾𝑑,𝑠 = 𝐾𝑑,𝑠
𝐸 ∪ 𝐾𝑑,𝑠

𝐶  and 𝐹𝐸(𝐾𝑑,𝑠) and 𝐹𝐶(𝐾𝑑,𝑠) are respectively the cumulative distributions of 𝐾𝑑,𝑠
𝐸  

and 𝐾𝑑,𝑠
𝐶  calculated over 𝐾𝑑,𝑠. Table D.8 shows the values of 𝐷𝑑

𝐾𝐿 calculated for each continuous 

distribution 𝑑 covered in this report.  

Table D.7: Descriptive statistics of the distributions of KL statistics 

                                                      
10 The empirical distributions that we compare with their corresponding theoretical distributions are derived from 

the sequences 𝑤𝑑,𝑠
𝐸  and 𝑤𝑑,𝑠

𝐶  of pseudo-random numbers. We therefore use the KL formulation to compare 

categorical probability distributions (even though the theoretical distributions are continuous). 
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Dist 

(𝑑) 

Proposed Functions 

(𝐾𝑑,𝑠
𝐸 ) 

Commercial Software 

(𝐾𝑑,𝑠
𝐶 ) 

Min Median Max Mean Min Median Max Mean 

𝑈 0.00012 0.00084 0.00289 0.00090 0.00009 0.00081 0.00283 0.00088 

𝑁 -0.00032 0.00131 4.65096 0.38614 -0.00047 0.00115 4.44697 0.37657 

𝑁𝐵 0.00002 0.00052 0.00214 0.00060 0.00004 0.00052 0.00197 0.00059 

𝑇 0.00014 0.00085 0.00275 0.00091 0.00008 0.00085 0.00262 0.00092 

𝑇𝐵 0.00013 0.00092 0.00304 0.00099 0.00012 0.00094 0.00295 0.00100 

𝑇𝑅 0.00010 0.00083 0.00291 0.00090 0.00014 0.00084 0.00289 0.00092 

𝑇𝐿 0.00013 0.00085 0.00267 0.00090 0.00013 0.00083 0.00310 0.00090 

𝑇𝐷 0.00012 0.00084 0.00285 0.00090 0.00015 0.00084 0.00279 0.00090 

𝑇𝑈 0.00011 0.00082 0.00277 0.00089 0.00008 0.00082 0.00406 0.00090 

𝑊𝑎 0.48174 0.50617 0.53151 0.50608 0.48660 0.50610 0.53122 0.50621 

𝑊𝑏 0.29218 0.30678 0.32153 0.30675 0.29113 0.30684 0.32280 0.30679 

𝑊𝑐 0.29143 0.30644 0.32151 0.30666 0.28979 0.30689 0.32157 0.30684 

𝑊𝑑 0.14213 0.14846 0.15632 0.14844 0.14076 0.14842 0.15642 0.14847 

 

 

  
Figure D.16: Density distribution and QQ plots of KL statistics for the Uniform Distribution 
Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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Figure D.17: Density distribution and QQ plots of KL statistics for Normal Distributions 
Top to bottom: Distributions 𝑁 and 𝑁𝐵. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 

  

  
Figure D.18: Density distribution and QQ plots of KL statistics for Triangular Distributions 
Top to bottom: Distributions 𝑇 and 𝑇𝐵. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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Figure D.19: Density distribution and QQ plots of KL statistics for Triangular Distributions 
Top to bottom: Distributions 𝑇𝑅, 𝑇𝐿, 𝑇𝐷 and 𝑇𝑈. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 

 



38 
  

 

  

  

  

  
Figure D.20: Density distribution and QQ plots of KL statistics for Weibull Distributions 
Top to bottom: Distributions 𝑊𝑎, 𝑊𝑏, 𝑊𝑐 and 𝑊𝑑. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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We then compare each 𝐷𝑑
𝐾𝐿 with the KS critical value 𝐷𝛼

′  calculated in Appendix C. Results in Table 

D.8 show that all 𝐷𝑑
𝐾𝐿 are lower than the critical value 0.06082. Therefore the proposed functions and the 

commercial software present statistically equivalent effectiveness when the samples they generate are 

compared with their corresponding theoretical distributions using the KL divergence test.  

 

Table D.8: Equivalence evaluated from the KL divergence test 

Distribution 
Two-sample KS Statistic 

(𝐷𝑑
𝐾𝐿) 

Uniform 𝑈 0.048 

Normal 
𝑁 0.040 

𝑁𝐵 0.035 

Triangular 

𝑇 0.030 

𝑇𝐵 0.029 

𝑇𝑅 0.035 

𝑇𝐿 0.024 

𝑇𝐷 0.030 

𝑇𝑈 0.030 

Weibull 

𝑊𝑎 0.021 

𝑊𝑏 0.026 

𝑊𝑐 0.053 

𝑊𝑑 0.034 
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Appendix E: Chi-Square Goodness-of-Fit Test 

 

The 𝜒2 test11 is used to assess whether a sample of data comes from a population with a specific 

distribution. The test applies to binned data (i.e., data organized into categories), which makes it a 

relevant tool to evaluate how well the samples generated for the categorical distributions listed in Table 3  

approximate their corresponding theoretical distributions. We calculate the 𝜒2 statistics 𝜒𝑑,𝑠
𝐸  and 𝜒𝑑,𝑠

𝐶  over 

the 𝑔𝑑 categories that comprise the distribution 𝑑, for each of the 𝑠 = 1, … ,1000 samples generated by 

the proposed functions and the commercial software for distribution 𝑑, as: 

𝜒𝑑,𝑠
𝐸 = ∑

(𝑃𝑑
𝐸(𝑔𝑑) − 𝑃𝑑(𝑔𝑑))

2

𝑃𝑑(𝑔𝑑)𝑔𝑑

 [11a] 

𝜒𝑑,𝑠
𝐶 = ∑

(𝑃𝑑
𝐶(𝑔𝑑) − 𝑃𝑑(𝑔𝑑))

2

𝑃𝑑(𝑔𝑑)𝑔𝑑

 

[11b] 

where 𝑃𝑑
𝐸(𝑔𝑑) and 𝑃𝑑

𝐶(𝑔𝑑) are respectively the probability mass distributions (PMF) of the samples 

𝑊𝑑,𝑠
𝐸 = [𝑤𝑑,𝑠,𝑖

𝐸 ] and 𝑊𝑑,𝑠
𝐶 = [𝑤𝑑,𝑠,𝑖

𝐶 ], 𝑠 = 1, … ,1000 generated by the proposed functions and the 

commercial software, and 𝑃𝑑(𝑔𝑑) the PMF of the reference distribution 𝑑, with all PMFs calculated for 

the set of categories 𝑔𝑑 that comprise the reference distribution 𝑑 and all samples 𝑊𝑑,𝑠
𝐸  and 𝑊𝑑,𝑠

𝐶  

corresponding to distribution 𝑑. 

We proceed with the benchmark based on the 𝜒2 test by comparing – for each distribution 𝑑 in Table 

3 – the distribution of the 1000 values of 𝜒𝑑,𝑠
𝐸  with the distribution of the 1000 values of 𝜒𝑑,𝑠

𝐶 . Table E.9 

presents descriptive statistics for distributions 𝜒𝑑,𝑠
𝐸  and 𝜒𝑑,𝑠

𝐶 . Figure E.21 compares the distributions of 

𝜒𝑑,𝑠
𝐸  and 𝜒𝑑,𝑠

𝐶 . Results in Table E.9 show that for all categorical distributions 𝐶𝑥 , the distributions of their 

corresponding 𝜒𝑥,𝑠
𝐸  and 𝜒𝑥,𝑠

𝐶  are almost the same. They are consequently not distinguishable in the charts 

in Figure E.21. 

 

Table E.9: Descriptive statistics of the distributions of 𝝌𝟐 statistics 

Dist 

(𝑑) 

Proposed Functions 

(𝜒𝑑,𝑠
𝐸 ) 

Commercial Software 

(𝜒𝑑,𝑠
𝐶 ) 

Min Median Max Mean Min Median Max Mean 

𝐶2 0.000 0.400 10.800 0.956 0.000 0.454 11.900 1.007 

𝐶3 0.000 1.424 16.503 2.117 0.001 1.331 16.122 1.976 

𝐶5 0.098 3.360 18.238 3.959 0.080 3.366 20.106 4.037 

𝐶10 1.184 8.278 27.824 9.032 0.544 8.204 28.250 8.926 

 

                                                      
11 For more on the 𝜒2 test please refer, for example, to NIST/SEMATECH (2013). 
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In order to compare the effectiveness of the proposed functions and the commercial software 

measured with the 𝜒2 test, we perform – for each categorical distribution 𝑑 – the two-sample KS test (as 

described in Appendix C) over the distributions of the 1000 values of 𝜒𝑑,𝑠
𝐸  and 𝜒𝑑,𝑠

𝐶  to verify if they can be 

assumed to be random samples of the same population. The approach is similar to the one used in 

Appendix C to compare the results from the one-sample KS tests as represented in [7]. We first calculate 

the KS statistic 𝐷𝑑
𝜒

 for each categorical distribution 𝑑 as: 

𝐷𝑑
𝜒

= sup
𝐾𝑑,𝑠

|𝐹𝐸(𝜒𝑑,𝑠
 ) − 𝐹𝐶(𝜒𝑑,𝑠

 )| [12] 

where 𝜒𝑑,𝑠
 = 𝜒𝑑,𝑠

𝐸 ∪ 𝜒𝑑,𝑠
𝐶  and 𝐹𝐸(𝜒𝑑,𝑠) and 𝐹𝐶(𝜒𝑑,𝑠) are respectively the cumulative distributions of 𝜒𝑑,𝑠

𝐸  

and 𝜒𝑑,𝑠
𝐶  calculated over 𝜒𝑑,𝑠

 . Table E.10 shows the values of 𝐷𝑑
𝜒

 calculated for each categorical 

distribution 𝑑 covered in this report. 

We then compare each 𝐷𝑑
𝜒

 with the KS critical value 𝐷𝛼
′  calculated in Appendix C. Results presented 

in Table E.10 show that all 𝐷𝑑
𝜒

 are lower than the critical value 0.06082. Therefore the effectiveness of 

the proposed functions and the commercial software are statistically equivalent when the samples they 

generate are compared with their corresponding theoretical distributions using the 𝜒2 test.  

 

Table E.10: Equivalence evaluated from the 𝝌𝟐 test 

Distribution 
Two-sample KS Statistic 

(𝐷𝑑
𝜒

) 

Categorical 

𝐶2 0.037 

𝐶3 0.052 

𝐶5 0.028 

𝐶10 0.021 
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Figure E.21: Density distribution and QQ plots of the 𝝌𝟐 statistics for Categorical Distributions 
Top to bottom: Distributions 𝐶2, 𝐶3, 𝐶5 and 𝐶10. Blue: Proposed functions, Red: Commercial software. 

QQ-Plot: Horizontal quantiles are from the proposed functions, vertical quantiles are from the commercial software. 
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Appendix F: Equivalence and Non-Inferiority Tests 

 

The equivalence test is used to assess whether two measurements are close enough to be considered 

equivalents. Equivalence can be claimed if the confidence interval of the difference between the means of 

the two measurements lies completely within acceptable, pre-defined equivalence limits. The test 

therefore requires two parameters: a confidence interval for the difference of the means, and a range of 

values within which the difference of the means is accepted as negligible. 

We apply the equivalence test to the means of the distributions of the KS (𝐷𝑑,𝑠
𝐸  and 𝐷𝑑,𝑠

𝐶 ), KL (𝐾𝑑,𝑠
𝐸  

and 𝐾𝑑,𝑠
𝐶 ) and 𝜒2 (𝜒𝑑,𝑠

𝐸  and 𝜒𝑑,𝑠
𝐶 ) statistics calculated in Appendix C, D and E – for each distribution 𝑑 – 

from the samples produced by the proposed functions and the commercial software. Table F.11 to Table 

F.13 present the means and their differences (including the 95% confidence interval of the differences), 

calculated for each statistical test performed above. The differences between the means are calculated as: 

𝜇𝑑
𝑇 = 𝜇𝑑,𝐶𝐵

𝑇 − 𝜇𝑑,𝐸𝐸𝑆
𝑇  [13] 

where 𝜇𝑑,𝐶𝐵
𝑇  and 𝜇𝑑,𝐸𝐸𝑆

𝑇  are respectively the means of the statistic 𝑇 calculated for distribution 𝑑 from the 

samples generated by the commercial software and proposed functions, and 𝜇𝑑
𝑇 is the difference of those 

means.  

We further examine the differences of the means for each distribution and – rather than defining an 

acceptable equivalence interval – we report the smaller relative equivalence interval within which the 

samples generated by the proposed functions would be accepted as equivalent to the ones generated by 

the commercial software. The equivalence intervals range from less than 0.1% to 2.4% for the KS 

statistics (Table F.11), from less than 0.1% to 2.7% for the KL statistics (Table F.12), and from 1.2% to 

7.1% for the 𝜒2 statistics (Table F.13). As for the differences between the means of the statistics, results 

in Table F.11 to Table F.13 show that for most of the distributions they are positive. This indicates that – 

for the samples generated for this benchmark, and according to the corresponding statistics – the proposed 

functions are on average more effective than the commercial software in generating samples for those 

distributions.12 For the cases where the differences between the means are negative, we proceed with the 

evaluation performing a non-inferiority test. 

The non-inferiority test has been broadly used in randomized clinical trials to show that an 

experimental treatment or a new therapy is not (much) worse than a standard treatment or an established 

therapy (or placebo) (See, for example, Christensen, 2007 or Lesaffre, 2008).13 Since the proposed 

functions presented in this report can be viewed as alternatives to those from the commercial software, we 

parallel the comparative assessment of the effectiveness of the former against the latter with that of 

medical experimental treatments or new therapies. Similar to the equivalence test, the non-inferiority one 

relies on the confidence interval of the difference of the means of two samples, which in this case are the 

six sets of the 1000 values calculated for the KS, KL and 𝜒2 statistics from the samples generated by the 

proposed functions and the commercial software. Unlike the equivalence test, however, the non-

inferiority test is designed as a one-sided test that attempts to demonstrate, in this case, that the upper 

                                                      
12 Ideally, results from the three statistics (KS, KL and 𝜒2) would be zero. 
13 The null-hypothesis we want to be rejected, in this case, is that the differences of the means of the test statistics 

are greater or equal to zero plus the margin.  
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bound of the confidence interval of the difference between the means lies below the upper limit of the 

range within which the difference of the means is accepted as negligible.  

We apply the non-inferiority test for the cases in Table F.11 to Table F.13 where the difference 

between the means is negative. Table F.14 presents the means, differences of the means and confidence 

intervals for those cases. These are the same results presented in Table F.11 to Table F.13. The table also 

includes the t-statistics and p-values from the non-inferiority test, for a margin of non-inferiority equals to 

0.1%. The latter refers to the relative difference between the two means for which the proposed functions 

can be accepted as non-inferior to the commercial software. Results show that for all cases, the statistics 

calculated for the proposed functions are (statistically significantly) not greater than 100.1% of their 

corresponding values calculated for the commercial software. This indicates that the proposed functions 

are – within a margin of 0.1% – non-inferior than the commercial software in generating pseudo-random 

numbers, even when the former seems less effective than the latter.  

 

Table F.11: Results from equivalence test for KS statistics 

Distribution 
Commercial 

Software 

Proposed 

Functions 
Difference [95% CI] 

Equivalence 

Interval 

Uniform 𝑈 0.00848 0.00865 -0.00017 [-0.00040, 0.00005] ±2.1% 

Normal 
𝑁 0.00849 0.00867 -0.00018 [-0.00041, 0.00005] ±2.1% 

𝑁𝐵 0.01222 0.01222 -0.00001 [-0.00033, 0.00032] ±0.0% 

Triangular 

𝑇 0.00876 0.00857 0.00019 [-0.00004, 0.00042] ±2.2% 

𝑇𝐵 0.00873 0.00862 0.00011 [-0.00012, 0.00035] ±1.3% 

𝑇𝑅 0.00874 0.00861 0.00013 [-0.00010, 0.00036] ±1.5% 

𝑇𝐿 0.00872 0.00874 -0.00002 [-0.00025, 0.00022] ±0.2% 

𝑇𝐷 0.00869 0.00857 0.00012 [-0.00011, 0.00035] ±1.4% 

𝑇𝑈 0.00859 0.00857 0.00001 [-0.00021, 0.00024] ±0.2% 

Weibull 

𝑊𝑎 0.00859 0.00864 -0.00005 [-0.00028, 0.00018] ±0.5% 

𝑊𝑏 0.00888 0.00866 0.00021 [-0.00002, 0.00044] ±2.4% 

𝑊𝑐 0.00877 0.00865 0.00012 [-0.00011, 0.00035] ±1.4% 

𝑊𝑑 0.00862 0.00862 0.00000 [-0.00023, 0.00022] ±0.0% 
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Table F.12: Results from equivalence test for KL statistics 

Distribution 
Commercial 

Software 

Proposed 

Functions 
Difference [95% CI] 

Equivalence 

Interval 

Uniform 𝑈 0.00088 0.00090 -0.00002 [-0.00006, 0.00001] ±2.6% 

Normal 
𝑁 0.37657 0.38614 -0.00957 [-0.07200, 0.05286] ±2.5% 

𝑁𝐵 0.00059 0.00060 -0.00002 [-0.00005, 0.00001] ±2.7% 

Triangular 

𝑇 0.00092 0.00091 0.00001 [-0.00003, 0.00005] ±1.0% 

𝑇𝐵 0.00100 0.00099 0.00001 [-0.00003, 0.00005] ±1.0% 

𝑇𝑅 0.00092 0.00090 0.00002 [-0.00002, 0.00006] ±2.4% 

𝑇𝐿 0.00090 0.00090 0.00000 [-0.00004, 0.00003] ±0.3% 

𝑇𝐷 0.00090 0.00090 0.00000 [-0.00004, 0.00004] ±0.0% 

𝑇𝑈 0.00090 0.00089 0.00001 [-0.00003, 0.00005] ±0.8% 

Weibull 

𝑊𝑎 0.50621 0.50608 0.00013 [-0.00053, 0.00079] ±0.0% 

𝑊𝑏 0.30679 0.30675 0.00004 [-0.00038, 0.00045] ±0.0% 

𝑊𝑐 0.30684 0.30666 0.00018 [-0.00024, 0.00060] ±0.1% 

𝑊𝑑 0.14847 0.14844 0.00002 [-0.00018, 0.00023] ±0.0% 

 

 

Table F.13: Results from equivalence test for 𝝌𝟐 statistics 

Distribution 
Commercial 

Software 

Proposed 

Functions 
Difference [95% CI] 

Equivalence 

Interval 

Categorical 

𝐶2 1.00654 0.95554 0.05101 [-0.07218, 0.17419] ±5.1% 

𝐶3 1.97613 2.11694 -0.14081 [-0.31832, 0.03670] ±7.1% 

𝐶5 4.03724 3.95929 0.07795 [-0.16685, 0.32274] ±1.9% 

𝐶10 8.92555 9.03223 -0.10668 [-0.48625, 0.27289] ±1.2% 
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Table F.14: Results from non-inferiority tests 

Distribution 
Commercial 

Software 

Proposed 

Functions 
Difference [95% CI] t-Stat p-Value 

KS Statistics  

Uniform 𝑈 0.00848 0.00865 -0.00017 [-0.00040, 0.00005] 1.453 0.000570 

Normal 
𝑁 0.00849 0.00867 -0.00018 [-0.00041, 0.00005] 1.422 0.000568 

𝑁𝐵 0.01222 0.01222 -0.00001 [-0.00033, 0.00032] -0.041 0.000569 

Triangular 𝑇𝐿 0.00872 0.00874 -0.00002 [-0.00025, 0.00022] 0.061 0.000569 

Weibull 𝑊𝑎 0.00859 0.00864 -0.00005 [-0.00028, 0.00018] 0.326 0.000568 

KL Statistics  

Uniform 𝑈 0.00088 0.00090 -0.00002 [-0.00006, 0.00001] 1.144 0.000588 

Normal 
𝑁 0.37657 0.38614 -0.00957 [-0.07200, 0.05286] 0.289 0.000521 

𝑁𝐵 0.00059 0.00060 -0.00002 [-0.00005, 0.00001] 0.991 0.000571 

𝜒2 Statistics  

Categorical 
𝐶3 1.97613 2.11694 -0.14081 [-0.31832, 0.03670] 1.533 0.000540 

𝐶10 8.92555 9.03223 -0.10668 [-0.48625, 0.27289] 0.505 0.000588 
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Appendix G: R Source Code 

 

Table G.15 describes the R programs developed to support the analysis described in this report. Box G.6 

through Box G.9 present the R source code of the programs. 

 

Table G.15: R Programs 

Analysis Scope in Report R Program 

KS Analysis Figures C.11-15 

Tables C.5-6, F.11 

KS.R 

KL Analysis Figures D.16-20 

Tables D.7-8, F.12 

KL.R 

Chi-Square Analysis Figures E.21 

Tables E.9-10, F.13 

Chi2.R 

Non-Inferiority Test Table F.14 Non-Inferior.R 

 



48 
  

 

Box G.6: R Source Code for the KS Analysis 
options(java.parameters="-Xmx4g") 

library(XLConnect) 

library(VGAM) 

library(truncdist) 

library(truncnorm) 

library(equivalence) 

library(openxlsx) 

 

myDist = readWorksheetFromFile("SampleNames.xlsm","Continuous") 

myDist 

fDist = array(myDist[4:9],dimnames=list(rows=myDist[,1],cols=c("d","p1","p2","p3","L","U"))) 

nameCols = c("Stat","pV") 

ksSumm = matrix(nrow=nrow(myDist),ncol=2) 

colnames(ksSumm) = nameCols 

rownames(ksSumm) = myDist$D 

 

for (iDist in 1:nrow(myDist)) { 

 print(paste((myDist$D[iDist]),"EES")) 

 mySamples = read.xlsx(paste("EES ",myDist$Name[iDist],".xlsx",sep=""), sheet=1) 

  

 ksEES = matrix(nrow=1000,ncol=2) 

 colnames(ksEES) = nameCols 

 for (iSample in 1:1000) {  

  ks = if(rownames(fDist)[iDist]=="U")  ks.test(mySamples[iSample], punif, min=fDist$p1[iDist], max=fDist$p2[iDist], alternative="t") else 

       if(rownames(fDist)[iDist]=="N")  ks.test(mySamples[iSample], pnorm, mean=fDist$p1[iDist], sd=fDist$p2[iDist], alternative="t") else 

       if(rownames(fDist)[iDist]=="Nb") ks.test(mySamples[iSample],  

          rtruncnorm(10000, mean=fDist$p1[iDist], sd=fDist$p2[iDist], a=fDist$L[iDist], b=fDist$U[iDist]), alternative="t") else 

       if(rownames(fDist)[iDist]=="Tb") ks.test(mySamples[iSample], ptrunc, spec="triangle", lower=fDist$p1[iDist], upper=fDist$p2[iDist], 

          theta=fDist$p3[iDist], a=fDist$L[iDist], b=fDist$U[iDist], alternative="t") else 

       if(substr(rownames(fDist)[iDist],1,1)=="T") ks.test(mySamples[iSample], ptriangle, lower=fDist$p1[iDist], upper=fDist$p2[iDist], 

          theta=fDist$p3[iDist], alternative="t") else 

       if(substr(rownames(fDist)[iDist],1,1)=="W") ks.test(mySamples[iSample]-1, pweibull, shape=fDist$p1[iDist], scale=fDist$p2[iDist], alternative="t")  

  ksEES[iSample,1] = ks$statistic 

  ksEES[iSample,2] = ks$p.value 

 } 

 rm(mySamples) 

 gc() 

 writeWorksheetToFile("KS.xlsx", data=myDist$D[iDist], sheet="EES", startRow=2, startCol=2+3*(iDist-1),header=FALSE) 

 writeWorksheetToFile("KS.xlsx", data=ksEES, sheet="EES", startRow=3, startCol=2+3*(iDist-1))  

 

 print(paste((myDist$D[iDist]),"CB")) 

 mySamples = read.xlsx(paste("CB ",myDist$Name[iDist],".xlsx",sep=""), sheet=1) 

 

 ksCB = matrix(nrow=1000,ncol=2) 

 colnames(ksCB) = nameCols 

 for (iSample in 1:1000) {  

  ks = if(rownames(fDist)[iDist]=="U")  ks.test(mySamples[iSample], punif, min=fDist$p1[iDist], max=fDist$p2[iDist], alternative="t") else 

       if(rownames(fDist)[iDist]=="N")  ks.test(mySamples[iSample], pnorm, mean=fDist$p1[iDist], sd=fDist$p2[iDist], alternative="t") else 

       if(rownames(fDist)[iDist]=="Nb") ks.test(mySamples[iSample],  

          rtruncnorm(10000, mean=fDist$p1[iDist], sd=fDist$p2[iDist], a=fDist$L[iDist], b=fDist$U[iDist]), alternative="t") else 

       if(rownames(fDist)[iDist]=="Tb") ks.test(mySamples[iSample], ptrunc, spec="triangle", lower=fDist$p1[iDist], upper=fDist$p2[iDist],  

          theta=fDist$p3[iDist], a=fDist$L[iDist], b=fDist$U[iDist], alternative="t") else 

       if(substr(rownames(fDist)[iDist],1,1)=="T") ks.test(mySamples[iSample], ptriangle, lower=fDist$p1[iDist], upper=fDist$p2[iDist], 

          theta=fDist$p3[iDist], alternative="t") else 

       if(substr(rownames(fDist)[iDist],1,1)=="W") ks.test(mySamples[iSample]-1, pweibull, shape=fDist$p1[iDist], scale=fDist$p2[iDist], alternative="t")  
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  ksCB[iSample,1] = ks$statistic 

  ksCB[iSample,2] = ks$p.value 

 } 

 rm(mySamples) 

 gc() 

 writeWorksheetToFile("KS.xlsx", data=myDist$D[iDist], sheet="CB", startRow=2, startCol=2+3*(iDist-1), header=FALSE) 

 writeWorksheetToFile("KS.xlsx", data=ksCB, sheet="CB", startRow=3, startCol=2+3*(iDist-1)) 

 

 ksDist = ks.test(ksEES[,1], ksCB[,1], alternative="t")  

 ksSumm[iDist,1] = ksDist$statistic 

 ksSumm[iDist,2] = ksDist$p.value 

  

 ksEquiv = rtost(ksCB[,1], ksEES[,1], alpha=0.05, tr=0) 

 writeWorksheetToFile("KS.xlsx", data=ksEquiv$mean.diff, sheet="Equivalence", startRow=3+iDist, startCol=5, header=FALSE) 

 writeWorksheetToFile("KS.xlsx", data=ksEquiv$se.diff,   sheet="Equivalence", startRow=3+iDist, startCol=6, header=FALSE) 

 

 jpeg(file=paste("ks",myDist$D[iDist],".jpeg")) 

 plot(density(ksEES[,1], bw=0.006, from=min(min(ksEES[,1]),min(ksCB[,1]))), xlab="", main="", ylab="", col="steelblue") 

 lines(density(ksCB[,1], bw=0.006, from=min(min(ksEES[,1]),min(ksCB[,1]))), col="red") 

 dev.off() 

  

 jpeg(file=paste("kSQQ",myDist$D[iDist],".jpeg")) 

 qqplot(ksEES[,1],ksCB[,1], plot.it=TRUE, xlab="", ylab="", xlim=c(min(ksEES[,1],ksCB[,1]),max(ksEES[,1],ksCB[,1])), 

                                                            ylim=c(min(ksEES[,1],ksCB[,1]),max(ksEES[,1],ksCB[,1]))) 

 abline(0,1) 

 dev.off() 

} 

 

writeWorksheetToFile("KS.xlsx", data=ksSumm, sheet="KS's KS", startRow=2, startCol=2) 

 

Box G.7: R Source Code for the KL Analysis 
options(java.parameters="-Xmx4g") 

library(XLConnect) 

library(VGAM) 

library(truncdist) 

library(entropy) 

library(mc2d) 

library(FNN) 

library(equivalence) 

library(openxlsx) 

myDist = readWorksheetFromFile("SampleNames.xlsm","Continuous") 

myDist 

fDist = array(myDist[4:9],dimnames=list(rows=myDist[,1],cols=c("d","p1","p2","p3","L","U"))) 

nameCols = c("Stat","pV") 

ksSumm = matrix(nrow=nrow(myDist),ncol=2) 

colnames(ksSumm) = nameCols 

rownames(ksSumm) = myDist$D 

 

for (iDist in 1:nrow(myDist)) { 

 print(paste((myDist$D[iDist]),"EES")) 

 mySamples = read.xlsx(paste("EES ",myDist$Name[iDist],".xlsx",sep=""), sheet=1) 

  

 klEES = matrix(nrow=1000,ncol=2) 

 colnames(klEES) = nameCols 



50 
  

 

 for (iSample in 1:1000) {  

  kl = if(rownames(fDist)[iDist]=="U") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts,  

          (hist(runif(10000, min=fDist$p1[iDist], max=fDist$p2[iDist]), plot=F, breaks=8))$counts) else 

       if(rownames(fDist)[iDist]=="N") KL.empirical((hist(mySamples[,iSample], plot=F, breaks=6, prob=F, ylim=c(-4,4)))$counts,  

          (hist(rnorm(10000, mean=fDist$p1[iDist], sd=fDist$p2[iDist]), plot=F, breaks=6, prob=F, ylim=c(-4,4)))$counts) else 

       if(rownames(fDist)[iDist]=="Nb") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts,  

          (hist(truncdist::rtrunc(10000, spec="norm", mean=fDist$p1[iDist], sd=fDist$p2[iDist], a=fDist$L[iDist], b=fDist$U[iDist]), 

           plot=F,breaks=8))$counts) else 

       if(rownames(fDist)[iDist]=="Tb") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts, 

          (hist(truncdist::rtrunc(10000, spec="triangle", lower=fDist$p1[iDist], upper=fDist$p2[iDist], theta=fDist$p3[iDist], a=fDist$L[iDist], 

           b=fDist$U[iDist]),plot=F, breaks=8))$counts) else 

       if(substr(rownames(fDist)[iDist],1,1)=="T") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts, (hist(rtriang(10000, 

          min=fDist$p1[iDist], max=fDist$p2[iDist], mode=fDist$p3[iDist]),plot=F, breaks=8))$counts) else 

       if(substr(rownames(fDist)[iDist],1,1)=="W") KL.empirical(mySamples[,iSample]-1,rweibull(10000, shape=fDist$p1[iDist], scale=fDist$p2[iDist])) 

  klEES[iSample,1] = kl 

  klEES[iSample,2] = 0 

 }  

 rm(mySamples) 

 gc() 

 writeWorksheetToFile("KL.xlsx", data=myDist$D[iDist], sheet="EES", startRow=2, startCol=2+3*(iDist-1),header=FALSE) 

 writeWorksheetToFile("KL.xlsx", data=klEES, sheet="EES", startRow=3, startCol=2+3*(iDist-1))  

 

 print(paste((myDist$D[iDist]),"CB")) 

 mySamples = read.xlsx(paste("CB ",myDist$Name[iDist],".xlsx",sep=""), sheet=1) 

 

 klCB = matrix(nrow=1000,ncol=2) 

 colnames(klCB) = nameCols 

 for (iSample in 1:1000) {  

  kl = if(rownames(fDist)[iDist]=="U") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts,  

          (hist(runif(10000, min=fDist$p1[iDist], max=fDist$p2[iDist]), plot=F, breaks=8))$counts) else 

       if(rownames(fDist)[iDist]=="N") KL.empirical((hist(mySamples[,iSample], plot=F, breaks=6, prob=F, ylim=c(-4,4)))$counts,  

          (hist(rnorm(10000, mean=fDist$p1[iDist], sd=fDist$p2[iDist]), plot=F, breaks=6, prob=F, ylim=c(-4,4)))$counts) else 

       if(rownames(fDist)[iDist]=="Nb") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts,  

          (hist(truncdist::rtrunc(10000, spec="norm", mean=fDist$p1[iDist], sd=fDist$p2[iDist], a=fDist$L[iDist], b=fDist$U[iDist]), 

           plot=F,breaks=8))$counts) else 

       if(rownames(fDist)[iDist]=="Tb") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts, 

          (hist(truncdist::rtrunc(10000, spec="triangle", lower=fDist$p1[iDist], upper=fDist$p2[iDist], theta=fDist$p3[iDist], a=fDist$L[iDist], 

           b=fDist$U[iDist]),plot=F, breaks=8))$counts) else 

       if(substr(rownames(fDist)[iDist],1,1)=="T") KL.plugin((hist(mySamples[,iSample], plot=F, breaks=8))$counts, (hist(rtriang(10000, 

          min=fDist$p1[iDist], max=fDist$p2[iDist], mode=fDist$p3[iDist]),plot=F, breaks=8))$counts) else 

       if(substr(rownames(fDist)[iDist],1,1)=="W") KL.empirical(mySamples[,iSample]-1,rweibull(10000, shape=fDist$p1[iDist], scale=fDist$p2[iDist])) 

  klCB[iSample,1] = kl 

  klCB[iSample,2] = 0 

 } 

 rm(mySamples) 

 gc() 

 writeWorksheetToFile("KL.xlsx", data=myDist$D[iDist], sheet="CB", startRow=2, startCol=2+3*(iDist-1),header=FALSE) 

 writeWorksheetToFile("KL.xlsx", data=klCB, sheet="CB", startRow=3, startCol=2+3*(iDist-1)) 

 

 ksDist = ks.test(klEES[,1], klCB[,1], alternative="t")  

 ksSumm[iDist,1] = ksDist$statistic 

 ksSumm[iDist,2] = ksDist$p.value 

 

 klEquiv = rtost(klCB[,1], klEES[,1], alpha=0.05, tr=0, epsilon=1) 

 writeWorksheetToFile("KL.xlsx", data=klEquiv$mean.diff, sheet="Equivalence", startRow=3+iDist, startCol=5, header=FALSE) 

 writeWorksheetToFile("KL.xlsx", data=klEquiv$se.diff,   sheet="Equivalence", startRow=3+iDist, startCol=6, header=FALSE) 
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 jpeg(file=paste("kl",myDist$D[iDist],".jpeg")) 

 plot(density(klEES[,1], bw=0.006, from=min(min(klEES[,1]),min(klCB[,1]))), xlab="", main="", ylab="", col="steelblue") 

 lines(density(klCB[,1], bw=0.006, from=min(min(klEES[,1]),min(klCB[,1]))), col="red") 

 dev.off() 

 

 jpeg(file=paste("klQQ",myDist$D[iDist],".jpeg")) 

 qqplot(klEES[,1],klCB[,1], plot.it=TRUE, xlab="", ylab="", xlim=c(min(klEES[,1],klCB[,1]),max(klEES[,1],klCB[,1])), 

                                                            ylim=c(min(klEES[,1],klCB[,1]),max(klEES[,1],klCB[,1]))) 

 abline(0,1) 

 dev.off() 

} 

 

writeWorksheetToFile("KS.xlsx", data=ksSumm, sheet="KL's KS", startRow=2, startCol=2) 

 

Box G.8: R Source Code for the Chi-Square Analysis 
options(java.parameters="-Xmx4g") 

library(XLConnect) 

library(vcd) 

library(equivalence) 

library(openxlsx) 

 

myDist = readWorksheetFromFile("SampleNames.xlsm","Discrete") 

myDist 

fDist = array(myDist[3],dimnames=list(rows=myDist[,1],cols="nCat")) 

nameCols = c("Stat","pV") 

ksSumm = matrix(nrow=nrow(myDist),ncol=2) 

colnames(ksSumm) = nameCols 

rownames(ksSumm) = myDist$D 

 

for (iDist in 1:nrow(myDist)) { 

 print(paste((myDist$D[iDist]),"EES")) 

 mySamples = read.xlsx(paste("EES ",myDist$Name[iDist],".xlsx",sep=""), sheet=1) 

  

 chiEES = matrix(nrow=1000,ncol=2) 

 colnames(chiEES) = nameCols 

 for (iSample in 1:1000) {  

  chi = chisq.test(table(mySamples[,iSample]), p=myDist[iDist,4:{4+(myDist$nCat[iDist]-1)}]) 

  chiEES[iSample,1] = chi$statistic 

  chiEES[iSample,2] = chi$p.value 

 }  

 rm(mySamples) 

 gc() 

 writeWorksheetToFile("Chi2.xlsx", data=myDist$D[iDist], sheet="EES", startRow=2, startCol=2+3*(iDist-1),header=FALSE) 

 writeWorksheetToFile("Chi2.xlsx", data=chiEES, sheet="EES", startRow=3, startCol=2+3*(iDist-1))  

 

 print(paste((myDist$D[iDist]),"CB")) 

 mySamples = read.xlsx(paste("CB ",myDist$Name[iDist],".xlsx",sep=""), sheet=1) 

 

 chiCB = matrix(nrow=1000,ncol=2) 

 colnames(chiCB) = nameCols 

 for (iSample in 1:1000) {  

  chi = chisq.test(table(mySamples[,iSample]), p=myDist[iDist,4:{4+(myDist$nCat[iDist]-1)}]) 

  chiCB[iSample,1] = chi$statistic 

  chiCB[iSample,2] = chi$p.value 
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 }  

 rm(mySamples) 

 gc() 

 writeWorksheetToFile("Chi2.xlsx", data=myDist$D[iDist], sheet="CB", startRow=2, startCol=2+3*(iDist-1),header=FALSE) 

 writeWorksheetToFile("Chi2.xlsx", data=chiCB, sheet="CB", startRow=3, startCol=2+3*(iDist-1))  

 

 ksDist = ks.test(chiEES[,1], chiCB[,1], alternative="t")  

 ksSumm[iDist,1] = ksDist$statistic 

 ksSumm[iDist,2] = ksDist$p.value 

 

 chiEquiv = rtost(chiCB[,1], chiEES[,1], alpha=0.05, tr=0) 

 writeWorksheetToFile("Chi2.xlsx", data=chiEquiv$mean.diff, sheet="Equivalence", startRow=3+iDist, startCol=5, header=FALSE) 

 writeWorksheetToFile("Chi2.xlsx", data=chiEquiv$se.diff,   sheet="Equivalence", startRow=3+iDist, startCol=6, header=FALSE) 

 

 jpeg(file=paste("chi",myDist$D[iDist],".jpeg")) 

 plot(density(chiEES[,1], bw=myDist$BW[iDist], from=min(min(chiEES[,1]),min(chiCB[,1]))), xlab="", main="", ylab="", col="steelblue") 

 lines(density(chiCB[,1], bw=myDist$BW[iDist], from=min(min(chiEES[,1]),min(chiCB[,1]))), col="red") 

 dev.off() 

  

 jpeg(file=paste("chiQQ",myDist$D[iDist],".jpeg")) 

 qqplot(chiEES[,1],chiCB[,1], plot.it=TRUE, xlab="", ylab="", xlim=c(min(chiEES[,1],chiCB[,1]),max(chiEES[,1],chiCB[,1])), 

                                                              ylim=c(min(chiEES[,1],chiCB[,1]),max(chiEES[,1],chiCB[,1]))) 

 abline(0,1) 

 dev.off() 

} 

 

writeWorksheetToFile("Chi2.xlsx", data=ksSumm, sheet="Chi's KS", startRow=2, startCol=2) 

 

Box G.9: R Source Code for the Non-Inferiority Test 
# Non-Inferiority for KS Test Stats 

ksData = openxlsx::read.xlsx("KS.xlsx", sheet="Equivalence", colNames=T) 

ksData$sd = (ksData$SE*sqrt(2000))/2 

kappa = 1 

ksData$z = (ksData $EES-ksData$CB-(0.001*ksData$CB))/(ksData$sd*sqrt((1+1/kappa)/1000)) 

Power = pnorm(ksData$z-qnorm(1-alpha))+pnorm(-ksData$z-qnorm(1-alpha)) 

ksData$power.inf = power.t.test(n=1000,delta=0.001*ksData$CB,sd=ksData$sd,sig.level=0.001,alternative="two.sided",type="two.sample")$power 

writeWorksheetToFile("KS.xlsx", data=ksData, sheet="NIF's KS", startRow=2, startCol=2) 

 

# Non-I nferiority for KL Test Stats 

klData = openxlsx::read.xlsx("KL.xlsx", sheet="Equivalence", colNames=T) 

klData$sd = klData$SE*sqrt(2000)/2 

klData$z = (klData$EES-klData$CB-(0.001*klData$CB))/(klData$sd*sqrt((1+1/kappa)/1000)) 

klData$power.inf = power.t.test(n=1000,delta=0.001*klData$CB,sd=klData$sd,sig.level=0.001,alternative="two.sided",type="two.sample")$power 

writeWorksheetToFile("KL.xlsx", data=klData, sheet="NIF's KS", startRow=2, startCol=2) 

 

# Non-I nferiority for Chi Test Stats 

chi2Data = openxlsx::read.xlsx("Chi2.xlsx", sheet="Equivalence", colNames=T) 

kappa=1 

chi2Data$sd = chi2Data$SE*sqrt(2000)/2 

chi2Data$z=(chi2Data$EES-chi2Data$CB-(0.001*chi2Data$CB))/(chi2Data$sd*sqrt((1+1/kappa)/1000)) 

chi2Data$power.inf = power.t.test(n=1000,delta=0.001*chi2Data$CB,sd=chi2Data$sd,sig.level=0.001,alternative="two.sided",type="two.sample" )$power 

writeWorksheetToFile("Chi2.xlsx", data=chi2Data, sheet="NIF's Chi2", startRow=2, startCol=2) 

 


